<table>
<thead>
<tr>
<th>No</th>
<th>Comment</th>
<th>Revision</th>
</tr>
</thead>
</table>
| 1 | How much background material should we include. The report currently has about 15 pages of material before it begins to address the data science questions. Can we cut some of that? | - We moved the background section to Appendix A.
- We condensd the Executive Summary section to 1 page by removing the previous FEW illustration figure.
- We also condensed the Introduction section to 2-pages by removing non-intuitive figures and their descriptions. Instead of the previous figure on global chokepoint events, we added a new Figure that illustrates the local, regional and national stresses caused by coupled food, energy and water systems.
- Now the report begins to address the Food, Energy and Water Science questions at page 5 and Data Science questions at page 9 |
| 2 | The last section (on uncertainty), needs to be reworked in my opinion. The control-theoretic perspective that it introduces is naive and not very relevant to the issues. | In the uncertainty section, we re-worked several parts to make it relevant to the workshop. First, we removed uncertainty quantification from system control perspective. Second, in section 3.5.3 Intellectual Challenges and Hurdles, we summarized several types of uncertainty challenges in data science that are discussed in a recent CCC Workshop Report on “quantification, communication, and interpretation of uncertainty in simulation and data science”. |
| 3 | The final paragraph proposing a dashboard should be rewritten | For the summary section, we re-wrote the last paragraph to highlight some topics that were not completely fleshed out in the workshop including the Nexus Dashboard idea and the need for community building activities towards an INFEWS Data Science community.
In addition, we re-wrote the transformative research agenda paragraph to mirror back the executive summary and the different sections of the report. |
| Other Changes | | In the introduction section, we presented examples on successful use of existing data science tools (e.g. GeoGlam, Climate Corp, Agricultural Census) in addition to the precision agriculture example.
In Section 3.1, we added a new figure that indicates need for the collection of new measurements and datasets possibly via enrichment of the sensor systems.
In Section 3.2, we added a new figure to illustrate the spatiotemporal coupling and teleconnection patterns.
In Section 3.4, we added examples for the Lifecycle Analysis to illustrate the lack of available datasets and tools. We also changed the previous Food Life-Cycle figure with a FEW Stock-Flow diagram to illustrate the data gap between different resources. |