A Unified Approach to Spatial Outliers Detection

Chang-Tien Lu
Spatial Database Lab
Department of Computer Science
University of Minnesota
ctlu@cs.umn.edu
http://www.cs.umn.edu/research/shashi-group
Outline

- Introduction
 - Motivation
 - General Definition of Spatial Outlier
 - Related Work
- Proposed Approach and Algorithm
- Evaluation of Proposed Approach
- Conclusions
Spatial Data Mining

- Spatial Databases are too large to analyze manually
 - NASA Earth Observation System (EOS)
 - National Institute of Justice - Crime mapping
 - Census Bureau, Dept. of Commerce - Census Data

- Spatial Data Mining
 - Discover frequent and interesting spatial patterns for post processing (knowledge discovery)
 - Pattern examples: outliers, hot-spots, land-use classification

- Historical Examples
 - London, 1854
 - Cholera & water pump
 - Colorado Springs, 1931
 - Fluoride & dental health
Spatial Outlier

- Definition
 - A data point that is extreme relative to its neighbors
 - Individual attribute value is not necessarily extreme in the total population, but is extreme in its adjacent area

- An example
 - Item: Palm Beach County,
 Neighbors(item) = Counties in Florida

Source: http://madison.hss.cmu.edu/buchanan-bush.gif
Application Domain

- Minneapolis-St. Paul (Twin-Cities) Traffic Data Set
 - 930 detectors (stations) installed on major highways
 - Periodical measuring attributes: volume, occupancy, speed
 - Interesting spatial outliers - discontinuities
 - Assume smooth spatial attribute
• I-35W North Bound
 • Volume: the number of vehicles passing a station within 5 minutes
Application Domain: Outlier Station

Figure 1: Station 139 on 1/12 1997

(a) Station 138 on 1/12 1997

(b) Station 140 on 1/12 1997
An Example of Spatial Outlier

- Spatial outlier: S, global outlier: G

![Graph showing original data points and fitting curve]

- $Z_s(x)$ approach: $S(x) = [f(x) - \frac{1}{k} \sum_{y \in N(x)} f(y)]$
- if $Z_s(x) = \frac{|S(x) - \mu_s|}{\sigma_s} > \theta$, declare x as a spatial outlier

![Graph showing outliers detected using spatial test]
Evaluation of Statistical Assumption

- Distribution of traffic station attribute $f(x)$ looks normal

- Distribution of $S(x) = [f(x) - \frac{1}{k} \sum_{y \in N(x)} f(y)]$ looks normal too!
Outlier Detection Tests

Outlier Detection Methods

One-dimensional (linear)
- Frequency distribution over attribute value

Multi-dimensional
- Homogeneous Dimensions
- Bi-partite dimension (Spatial outlier detection)

Graphical
- Varigram Cloud
- Moran Scatterplot

Quantitative
- Scatterplot
- Spatial Statistic $Z_{s(x)}$
Outlier Detection Tests

- Related work: two families
 - 1-dimension - ignores geographic location
 - Homogeneous Multi-dimension - mixes location with attributes
 - Spatial outlier
 - 2 classes of dimensions - location, attributes
 - Neighborhood - based on location dimensions
 - Difference - compares attribute dimensions

- Comparison of outlier detection methods

<table>
<thead>
<tr>
<th></th>
<th>One-dimensional (linear)</th>
<th>Multi-dimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor Definition</td>
<td>N/A</td>
<td>location and attribute</td>
</tr>
<tr>
<td>Comparison</td>
<td>with population distribution</td>
<td>location and attribute</td>
</tr>
</tbody>
</table>
Issues

- Numerous tests
 - Each has custom algorithm
 - Adds complexity to implement Spatial Database Management System

- Desirable
 - Unified test
 - A general algorithm to perform different tests
 - High performance
Our Contribution

- A general definition of spatial outlier
 - s-outlier

- Show that existing definition are special cases of s-outlier

- Develop efficient algorithms to detect spatial outlier

- Analyze the computation structure of spatial outlier detection algorithms

- Develop I/O cost models

- Evaluate alternate page clustering methods
General Definition of Spatial Outlier

- Given
 - A spatial framework SF consisting of locations s_1, s_2, \ldots, s_n
 - An attribute function $f : s_i \rightarrow R$ (R : set of real numbers)
 - A neighborhood relationship $N \subseteq S \times S$
 - A neighborhood aggregation function $f_{aggr}^N : R^N \rightarrow R$
 - A difference function $F_{diff} : R \times R \rightarrow R$
 - Statistic test function $ST : R \rightarrow \{True, False\}$
 - Test is based on $F_{diff} (f, f_{aggr}^N(f, N))$

- General definition: S-outlier
 - An object $O \in S$ is a S-outlier $(f, f_{aggr}^N, F_{diff}, ST)$ if $ST == TRUE$
Related Work - Spatial Outlier Tests

- Different Spatial Outlier Tests
 - Spatial Statistic Approach
 - Scatter Plot Approach (Luc Anselin ’94)
 - Moran Scatter plot Approach (Luc Anselin ’95)
 - Variogram Cloud Approach (Graphic)

- All these are special cases of s-outlier
 - Show this for one case: scatter plot
Scatter Plot Approach

- **Lemma**
 - Scatter plot is a special case of S-outlier

- **Given**
 - An attribute function $f(x)$
 - A neighborhood relationship $N(x)$
 - An aggregation function $f_{aggr}^N: E(x) = \frac{1}{k} \sum_{y \in N(x)} f(y)$
 - A difference function $F_{diff}: \epsilon = E(x) - (m \ast f(x) + b)$

- **Detect spatial outlier by**
 - Statistic test function $ST: \left| \frac{\epsilon - \mu_\epsilon}{\sigma_\epsilon} \right| > \theta$
Outline

- Introduction
- Proposed Approach and Algorithm
 - Problem formulation
 - Our approach
 - Efficient algorithm
 - Cost model
- Evaluation of Proposed Approach
- Conclusions
Problem Formulation

- General definition: S-outlier
 - An object $O \in S$ is a S-outlier $(f, f_{aggr}^N, F_{diff}, ST)$ if $ST == TRUE$

- Design
 - An efficient algorithm to detect S-outlier, i.e., $O = \{s_i | s_i \in S, s_i$ is a spatial outlier\}

- Objective
 - Efficiency: to minimize the computation time

- Constraints
 - F_{diff} and ST are algebraic aggregate functions of values of f and f_{aggr}^N
 - The size of the data set \gg the main memory size
 - Computation time is determined by I/O time
Aggregate Function

- **Distributive aggregate function** F
 - Global F value can be computed by applying the G function to the value of F in each partition of the data set, $F = G$ for most cases

- **Algebraic aggregate function** F
 - Global F value can be computed using a fixed number of sub-aggregates from each partition of the data set

Distributive Aggregate Function: Min

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$R[1]$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$R[2]$</td>
<td>4</td>
<td>null</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>$R[3]$</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$R[4]$</td>
<td>7</td>
<td>5</td>
<td>null</td>
<td>5</td>
</tr>
</tbody>
</table>

$\text{Min}(C[j]) = 1$
$\text{Min}(M[i,j]) = \text{Min}(\text{Min of row}) = \text{Min}(\text{Min of column})$

Algebraic Aggregate Function: Variance

<table>
<thead>
<tr>
<th>$M(i,j)$</th>
<th>$c[1]$</th>
<th>$c[2]$</th>
<th>$c[3]$</th>
<th>$\text{Var} \cdot \text{Count} \cdot \text{Sum of Sq}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R[1]$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0.6 3 6 14</td>
</tr>
<tr>
<td>$R[2]$</td>
<td>4</td>
<td>null</td>
<td>6</td>
<td>0.6 3 6 14</td>
</tr>
<tr>
<td>$R[3]$</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8 3 18 132</td>
</tr>
<tr>
<td>$R[4]$</td>
<td>7</td>
<td>5</td>
<td>null</td>
<td>1 2 12 74</td>
</tr>
</tbody>
</table>

$\text{Var}(C[j]) = 25 6 2.8 6.04$
$F(M) = \frac{1}{\text{Count}(C[j])} \left(\frac{\text{Sum of Sq}(C[j])}{\prod_{i=1}^{4} \text{Count}(R[i])} \right)^2$
$\frac{\text{Sum of Sq}(C[j])}{\prod_{i=1}^{4} \text{Count}(R[i])}$
Our Approach

- Separate two phases
 - Model Building
 - Testing: test a node (or a set of nodes)

- Computation Structure of Model Building
 - Key insights:
 - Spatial self join using \(N(x) \) relationship
 - Algebraic aggregate function can be computed in one disk scan of spatial join

- Computation Structure of Testing
 - Single node: spatial range query
 - Get_All_Neighbors(x) operation
 - A given set of nodes
 - Sequence of Get_All_Neighbor(x)
An Example of Our Approach

- Consider Scatter Plot

- Model Building
 - Neighborhood aggregate function \(f_{aggr}^N : E(x) = \frac{1}{k} \sum_{y \in N(x)} f(y) \)
 - Distributive aggregate functions
 - \(\sum f(x), \sum E(x), \sum f(x)E(x), \sum f^2(x), \sum E^2(x) \)
 - Algebraic aggregate functions
 - \(m = \frac{N \sum f(x)E(x) - \sum f(x) \sum E(x)}{N \sum f^2(x) - (\sum f(x))^2} \)
 - \(b = \frac{\sum f(x) \sum E^2(x) - \sum f(x) \sum f(x)E(x)}{N \sum f^2(x) - (\sum f(x))^2} \)
 - \(\sigma_\epsilon = \sqrt{\frac{S_{yy} - (m^2S_{xx})}{n-2}} \),
 - where \(S_{xx} = \sum f^2(x) - [\frac{(\sum f(x))^2}{n}] \)
 - and \(S_{yy} = \sum E^2(x) - [\frac{(\sum E(x))^2}{n}] \)

- Testing
 - Difference function \(F_{diff} \)
 - \(\epsilon = E(x) - (m \cdot f(x) + b) \)
 - where \(E(x) = \frac{1}{k} \sum_{y \in N(x)} f(y) \)
 - Statistic test function \(ST \)
 - \(\left| \frac{\epsilon - \mu_\epsilon}{\sigma_\epsilon} \right| > \theta \)
Model Building Algorithm

- Algorithm A1: steps
 - For each location x
 - Retrieve data record of $x = (f(x), \text{identities of neighbors}(x))$
 - Get-All-Neighbors(x): Retrieve data records of neighbor(x)
 * if neighbor y is not in the memory buffer, request another I/O operation
 - Compute neighborhood aggregate function f_{aggr}^N
 - Accumulate distributive aggregate function: $f_{aggr}^{D1}, f_{aggr}^{D2}, \ldots, f_{aggr}^{Dm}$
 - Compute algebraic aggregate function: $f_{aggr}^{A1}, f_{aggr}^{A2}, \ldots, f_{aggr}^{An}$

- I/O cost is determined by
 - Dominant operation: Get-All-Neighbors(x)
 - I/O cost of Get-All-Neighbors(x) is determined by the clustering efficiency
 - Grouping nodes into disk page
Test Algorithm

- Algorithm A2: steps
 - For each location x along a route
 - Retrieve data record of $x = (f(x), \text{identifies of neighbors}(x))$
 - Get-All-Neighbors(x): Retrieve data records of neighbor(x)
 * if neighbor y is not in the memory buffer
 * request another I/O operation
 - Compute difference function F_{diff}
 - if test function $ST == True$
 - Declare x as an outlier
I/O Cost Model

- Definition
 - CE: Clustering Efficiency
 - N: Total number of nodes
 - Bfr: Blocking factor (number of nodes in a page)
 - K: Avg. number of neighbors for each node
 - L: Number of nodes in a route

- Cost model of A1
 - $\lceil \frac{N}{Bfr} \rceil + N \times K \times (1 - CE)$
 - The cost to retrieve all nodes: $\lceil \frac{N}{Bfr} \rceil$
 - The cost to retrieve neighbors of all nodes: $N \times K \times (1 - CE)$

- Cost model of A2
 - $L \times (1 - CE) + L \times K \times (1 - CE)$
Clustering Efficiency Parameter

- Computation cost (I/O cost) is determined by Clustering Efficiency (CE)

- CE definition:
 - (Total number of unsplit edges) / (Total number of edges)
 - Probability [v_i and a neighbor of v_i are stored in the same disk page]

- An example
 - $CE = \frac{9-3}{9} = \frac{6}{9} = 0.66$

- CE depends on
 - Disk block size
 - Node record size, edge distribution over nodes
 - Clustering method
Outline

- Introduction
- Proposed Approach and Algorithm
- Evaluation of Proposed Approach
 - Candidates (Clustering Methods)
 - Experiment Design
 - Results
- Conclusions
Experimental Evaluation (Summary)

- Hypothesis:
 - I/O cost of the algorithms is determined by the clustering efficiency

- Physical Data Page Clustering Method
 - Graph-based method: CCAM
 - Geometric method: Cell Tree
 - Geometric method: Z-order

- Metrics: Clustering Efficiency (CE), I/O cost

- Benchmark data
 - Minneapolis - St. Paul traffic data (loop-detector)

- Benchmark tasks
 - Model Building
 - Test Spatial Outlier
Clustering Method: CCAM

- Connectivity Clustered Access Method
- Cluster the nodes via min-cut graph partitioning
- Use B+ tree with Z-order as the secondary index
Clustering Method: CCAM
Clustering Method: Cell Tree

- Binary Space Partitioning (BSP)
- Decompose universe into disjoint convex subspaces
- Each leaf node corresponds to one of the subspaces
- Each tree node is stored on one disk page
- Cannot exploit edge information, pure geometric
Clustering Method: Cell Tree
Clustering Method: Z-order

- Impose a total order on the nodes
- Z order = interleave (bits of X, bits of Y)
- Use B+ tree as the primary index
- Cannot exploit edge information, pure geometric
Clustering Method: Z-order
Experiment Design

• Questions/Hypotheses

 • What is the ranking of candidate clustering methods?

 • Is CE a predicator of relative performance of clustering methods?

 • Does cost model predict observed ranking?

 • What is the effect of following on candidate clustering methods?
 - Disk page size
 - Number of memory buffer
Experiment Design

- **Experiment Data Set**
 - Twin-Cities Traffic Data
 - Each data object (node): attribute values, neighbor list, size: 256 bytes

![Diagram](image.png)

Figure 2: Experimental Layout
Model Building: Effect of Page Size

- Fixed Parameters: Buffer Size = 64k
- Variable Parameters
 - Page size, clustering strategy

- CCAM has the best performance
- CCAM has the highest CE value
- High CE => Low I/O cost
 - Cost Model: \((N/Bfr) + N*K*(1-CE) \)
- Increase page size => reduce number of page accesses
Model Building: effect of Buffer Size

- Fixed Parameters: page size = 2K, clustering efficiency:
 - CCAM=0.81, Cell=0.69, Z-ord=0.51

- Variable Parameters
 - Number of buffers, clustering strategy

- Increase Buffer size => reduce number of page accesses
 - CCAM has the best performance
Test Spatial Outlier (Route): Effect of Page Size

- Average I/O cost of outlier query over 50 routes
- Fixed Parameters
 - Buffer size: 4 Kbytes, data point size = 256 bytes
- Variable Parameters
 - Page size, clustering strategy

- Increase page size => reduce number of page accesses
- CCAM has the best performance
- CCAM has the highest CE value
- High CE => Low I/O cost
 - Cost Model: $L \times (1 - CE) + L \times K \times (1 - CE)$
- Cell Tree has zero CE value when Bfr=2
- Increase page size => Performance gap reduces
Summary of Experimental Results

- Clustering Efficiency
 - CCAM achieves higher clustering efficiency than Cell tree and Z-order

- Test parameter and test result computation
 - CCAM has lower I/O than Cell tree and Z-order

- Higher CE leads to lower I/O cost
 - CE is a good predicator of relative I/O performance

- Page size improves clustering efficiency of all methods
 - Reduces performance gap between methods
Conclusion

- A general definition of spatial outlier
 - s-outlier

- Show that existing definition are special cases of s-outlier
 - Scatter plot, Moran Scatterplot, Spatial Statistic

- Develop efficient algorithm to detect spatial outlier
 - Model Building
 - Test Spatial Outlier

- Recognize the computation structure of spatial outlier detection algorithms
 - Algebraic aggregate functions on θ self join
 - Get-All-Neighbor() dominates I/O cost

- Develop Algebraic Cost Models

- Evaluate Alternate Page Clustering Methods
Future Direction

- Extend Spatial Outlier Detection Test
 - Multi-attributes
 - Traffic volume, speed, ..
 - Location attribute includes time
 - Temporal and Spatial-Temporal Outliers

- Extend Experiments
 - NASA data sets - uniform grid
 - Hypothesis - Geometric clustering may perform well

- Explore other spatial patterns beyond spatial outlier
 - Land-use classification
 - Co-locations
 - Example:
 - Fire ignition source feature
 - Needle vegetation type feature
 - Drought feature

- Related Publications
 - Detecting Graph-based Spatial Outliers: Algorithms and Applications, *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, September, 2001
 - Detecting Graph-based Spatial Outliers, *the International Journal of Intelligent Data Analysis (IDA)*, Vol. 6, No 3. 2002
 - A Unified Approach to Spatial Outliers Detection, *IEEE Transactions on Knowledge and Data Engineering*. (under review)
Application Domain

- I-35W North Bound
 - Volume: the number of vehicles passing a station within 5 minutes

![Average Traffic Volume](chart)

Average Traffic Volume (Time v.s. Station)

I35W Station ID (North Bound)

Time