Exploiting Spatial Autocorrelation to Efficiently Process Similarity Queries

Pusheng Zhang

Department of Computer Science and Engineering
University of Minnesota, Twin Cities
pusheng@cs.umn.edu

Advisers: Vipin Kumar and Shashi Shekhar

Thesis Committee: Sudipto Banerjee and Jaideep Srivastava

June 9, 2005
Biography Sketch

* Education
 - Ph.D. Student, Computer Science, U. of Minnesota, Minneapolis, MN, 2000 - Present
 - B.S., Computer Science, U. of Science and Technology of China, Hefei, China, 1999

* Honors and Awards
 - Student Paper Award, University Consortium of Geographic Information Science, 2005
 - Summer Fellowship, United Technologies Corporation, 2004
 - Student Paper Award, University Consortium of Geographic Information Science, 2003
 - Excellence in Research Recognition Award, U. of Minnesota, 2003
 - Excellent Student Fellowship, Government of Anhui Province, China, 1999
 - Excellent Student Scholarship, U. of Science and Technology of China, 1995-1998
Selected Publications

* Spatial and Temporal Databases

 - [NG2I05] Spatial Cone Tree: An Auxiliary Search Structure for Correlation-based Similarity Queries on Spatial Time Series Data, with S. Shekhar, Y. Huang, and V. Kumar, as a book chapter in an edited book, forthcoming

 - [TKDE05] Cone Tree: An Index Structure for Correlation Queries on Spatial Time Series Data, with S. Shekhar, V. Kumar, and Y. Huang, to be submitted to IEEE Transactions on Knowledge and Data Engineering

 - [SSTD03] Exploiting Spatial Autocorrelation to Efficiently Processing Correlation-Based Similarity Queries, with Y. Huang, S. Shekhar and V. Kumar, Symp. of Spatial and Temporal Databases, 2003

 - [PAKDD03] Correlation Analysis of Spatial Time Series Datasets: A Filter-and-Refine Approach, with Y. Huang, S. Shekhar and V. Kumar, Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2003

* Spatial Data Mining

 - [KDD01] Graph-based Outlier Detection: Algorithms and Applications, with S. Shekhar, and C.T. Lu, ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, 2001
Selected Publications

* Spatial Data Mining

 - [PAKDD05] Mining Time-profiled Associations, with J. Yoo and S. Shekhar, PAKDD 2005

 - [IDA03] Detecting Graph-based Spatial Outliers, with S. Shekhar, and C.T. Lu, J. Int. Data Analysis, 6(5), 2003

 - [ESDM05] Discovery of Patterns in Earth Science Data Using Data Mining, with M. Steinbach, V. Kumar, S. Shekhar, P. Tan, S. Klooster, and C. Potter, as a book chapter in Next Generation of Data Mining Applications

 - [ICTAI02] Data Mining for Selective Visualization of Large Spatial Datasets, with S. Shekhar, C.T. Lu, and R. Liu, ICTAI 2002
Spatio-Temporal Data are Everywhere

* Traditional Data
 * Numerical, categorical, ordinal, boolean, etc
 * e.g., city name, city population

* Spatio-Temporal Data
 * Spatial Attribute: geographically referenced
 – Location: e.g., longitude, latitude, and elevation
 * Temporal Information: time stamps

* Large spatial and temporal data are available
 * Advanced data collecting tools: GPS, satellites, sensors, retailers, etc
 * Information “nuggets”
 – Finding potentially useful information: business and scientific applications
 – e.g., Walmart transaction data, NASA climate data
Spatio-temporal Data Mining (STDM)

- The process of discovering
 - Interesting, potentially useful, non-trivial patterns
 - From large spatio-temporal datasets

- Application Domains
 - Eg: Climatology, Earth science, and Epidemiology

- Spatial Time Series (STS) Data
 - a spatial framework: set of locations
 - k attributes per location, each a time series of length m
Examples of Analysis Questions for STDM

⋆ Analysis Questions

⋆ Classification: predict long-term (3-6 months) rainfall
⋆ Clustering: find spatio-temporal homogeneous regions
⋆ Relationship: find locations influenced by El Niño (SSTD03, PAKDD03)
⋆ Anomaly: find unusual events (anomalies) (KDD01, GEOINFO03)

⋆ Relationship Mining:

⋆ Interest Measure
 – Correlation(time series \(f \), time series \(g \))
 – Range: \([-1, 1]\)
 – Uncorrelated if \(\rho = 0 \)

Correlation: 0.8831

©University of Minnesota
Example of Correlation Queries

* Correlation Queries:
 * STS Datasets: $D^1(location, f)$ and $D^2(location, g)$
 * Range Query: select $D^1.location$ from D^1 where $\text{corr}(D^1.f, \text{Query}) \geq \theta$

* All-Pair Query: finding all highly correlated pairs between two STS datasets
Example of Correlation Queries

* Correlation Queries:
 * STS Datasets: $D^1(location, f)$ and $D^2(location, g)$
 * Range Query: select $D^1.location$ from D^1 where $\text{corr}(D^1.f, \text{Query}) \geq \theta$
 * All-Pair Query: finding all highly correlated pairs between two STS datasets
Illustrative Application Domain

* Teleconnection: Ocean affects lands

* NASA Funded Project: *Discovery of Changes from the Global Carbon Cycle and Climate System Using Data Mining*

* For example: El Niño

 – Anomalous warming of tropical Eastern Pacific leads to:
 – Heavy Rain in Peru and Drought in Australia

 – D indicates drought;
 – R indicates unusually high rainfall
 – W indicates abnormally warm
Illustrative Application Domain

- El Niño: Anomalous warming of tropical Eastern Pacific
 - Characterized using time series
Illustrative Application Domain

* Teleconnection: Global Impact of El Niño

![Graph showing correlation between Nino 1+2 and land temperature]

Correlation: 0.84546

Correlation: 0.021829
Illustrative Application Domain

* Teleconnection: Global Impact of El Niño

![Graph showing correlation between teleconnection and land temperature](image)

* Computing Challenges
 * Large number of locations: e.g., 1 km by 1 km spatial resolution
 * Long time series, e.g., monthly data for 50 years – 600 observations
Big Picture

Data Mining Tasks:
- Classification
- Clustering
- Outlier Detection
- Relationship Mining

Correlation Queries

Query Language

DBMS
- Query Processing
- Storage and Indexing

Spatial
Time Series
Data
Highlights of Contributions

☆ How They Fit into the Big Picture

Data Mining Tasks:
- Classification
- Clustering
- Relationship Mining
- Outlier Detection

Correlation Queries

DBMS
- Query Language
- Query Processing
- Storage and Indexing

Spatial
Time Series
Data

Earth Science Data Mining
[SDM04] [ESDM 05] [PAKDD05]

Spatial Outlier Detection
[KDD01] [GEOINFO03] [IDA03]

Processing Correlation Queries
[SSTD03] [PAKDD03]

Indexing: Spatial Cone Tree
[NG2I05] [TKDE05]
Today’s Focus

* Spatial Cone Tree
 * A search structure on high-dim time series
 * Exploit spatial insights to design efficient query processing algorithms

* Speed up Correlation Query Processing
 * Range Queries
 * All-Pair Queries
Related Work

* Reduce Time Dimensionality
 * Transformations: e.g., DFT and DWT
 * Low-dim indexing: R-tree, Grid file, Quad-tree
 * e.g., F-index [Agrawal et al. 1993], [Rafiei et al. 2000], [Chan et al. 2003]

* Assumptions
 * Correlation is easy to computed in transformed space
 * Skewed power spectrum: few coefficients adequate
Limitations of Related Work

* Limitations
 * Effectiveness ↓ for non-skewed power spectrum
 - Non-skewed power spectrum: removing seasonality for time series

 ![Power Spectrum of DFT](image)

 Figure 1: Power Spectrum of DFT for: (a) Raw Time Series (b) Removing Seasonality

 * F-index is not efficient for (b)
 * Room to improve using spatial properties
Overview

- Motivation and Problem Definition
- Related Work and Contributions
- Proposed Approach
 - Evaluation of Proposed Approach
 - Conclusions & Future Work
Overview of Proposed Approach

- **Insight: Spatial Autocorrelation**
 - Nearby locations have similar time series

- **Spatial Cone Tree**
 - Group similar time series in space proximity together

- **Efficient Query Processing Algorithms**
 - Query processing based on cones (group of similar time series) instead of individual time series
 - Filter-and-refine paradigm
Spatial Autocorrelation

* Tobler’s first law of geography:
 * “Everything is related to everything else but nearby things are more related than distant things”

* Spatial autocorrelation
 * Nearby objects tend to be similar: possibly group similar ones together

Sea Surface Temperature (SST) in March, 1982
Normalization of Time Series to Unit Sphere

* Different Scales of Time Series – Normalization

* Time Series of length m, $f = \{f_1, f_2, \ldots, f_m\}$

* Normalized time series into unit vector \hat{f}

\[
\hat{f} = \frac{f - \bar{f}}{\sqrt{m\sigma_f}}
\]

* Fact 1: \hat{f} is on surface of a m-dimensional unit sphere

\[
| f |^2 = \sum_{i=1}^{m} f_i^2 = \frac{\sum_{i=1}^{m} (f_i - \bar{f})^2}{m\sigma_f^2} = 1
\]

* Fact 2: $corr(f, g) = \cos(\hat{f}, \hat{g}) = \hat{f} \cdot \hat{g}$ for time series f, g

\[
corr(f, g) = \frac{\sum_{i=1}^{m} \left(\frac{f_i - \bar{f}}{\sqrt{m\sigma_f}} \right) \cdot \left(\frac{g_i - \bar{g}}{\sqrt{m\sigma_g}} \right)}{\sqrt{m\sigma_f^2} \sqrt{m\sigma_g^2}} = \hat{f} \cdot \hat{g} = \cos(\hat{f}, \hat{g})
\]
Normalization Illustration

* Time Series → Unit Vector in m-dim Sphere, e.g., m = 2

![Diagram showing unit vectors and their angles]

<table>
<thead>
<tr>
<th>Value(t₁)</th>
<th>Value(t₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>1</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>-1</td>
</tr>
<tr>
<td>k</td>
<td>1</td>
</tr>
</tbody>
</table>

* Correlation between Time Series → Angles between Unit Vectors
* Given: Time Series f, g and correlation threshold θ

* Correlation between Time Series \rightarrow Angles between Unit Vectors
Spatial Autocorrelation Revisited

* Spatial autocorrelation
 * Nearby objects tend to be similar: possibly group similar ones together

* Insight: grouping similar objects based on space proximity

* Processing queries by groups instead of individuals

Sea Surface Temperature (SST) in March, 1982
Concepts of Cones

* Time Series → Unit Vector in m-dim Sphere

* Cone: Group of time series unit vectors
 * Axis unit vector: center vector
 * Span: largest angle between axis and any unit vector
Spatial Cone Tree

- A hierarchical search structure on normalized time series data
- Leaf node: cone and pointer to disk containing one or more normalized time series
- Internal node: cone and pointer to index page

![Tree Diagram]

M = 4 span_max = 30°
Operations on Spatial Cone Trees

* Query Operations:
 * Range query:
 – find highly correlated time series with query time series
 * All-Pair query:
 – find all pairs of highly correlated cross two spatial cone trees

* Maintenance Operations:
 * Insertion
 * Deletion
 * Bulk-loading
Illustration of Bulk-Loading

* Rationale and Strategy
 * Spatial autocorrelation
 - Nearby objects are related
 * Space-partition based bulk loading: e.g., quad-tree like
Range Query Processing

- Brute-force: Linear Scan

- Our Approach: Filter-and-Refine Strategy

Given:
- Min correlation threshold \(\theta \)
- Cone: axis and span
- Query \(q \)

Objective:
find all time series highly correlated with \(q \)
i.e., \(\text{corr}(t, q) > \theta \) or \(\text{angle}(t, q) < \arccos \theta \)

Key Idea:
Range Query Processing

- Brute-force: Linear Scan
- Our Approach: Filter-and-Refine Strategy

Given:
- Min correlation threshold θ
- Cone: axis and span
- Query q

Objective:
find all time series highly correlated with q

i.e., $\text{corr}(t, q) > \theta$ or $\text{angle}(t, q) < \arccos\theta$

Key Idea:
- Determine upper bound and lower bound of angles between q and time series in the cone
Range Query Processing

* Brute-force: Linear Scan

* Our Approach: Filter-and-Refine Strategy

Given:
- Min correlation threshold θ
- Cone: axis and span
- Query q

Objective:
find all time series highly correlated with q
i.e., $\text{corr}(t, q) > \theta$ or $\text{angle}(t, q) < \arccos \theta$

Key Idea:
* Determine upper bound and lower bound of angles between q and time series within the cone

* Upper Bound = $\sigma + \text{span}$; Lower Bound = $\sigma - \text{span}$.
 σ is the angle between the q and the axis of the cone
∗ Eg: Given minimum correlation threshold \(\theta = 0.707 \), \(\arccos(\theta) = 45^\circ \)
Query Time Series:

Minimal Correlation Threshold = 0.8
An Example of Range Query Processing

Query Time Series:

Minimal Correlation Threshold = 0.8
An Example of Range Query Processing

Query Time Series:

Minimal Correlation Threshold = 0.8
An Example of Range Query Processing

Query Time Series:

Minimal Correlation Threshold = 0.8
An Example of Range Query Processing

Query Time Series:

Minimal Correlation Threshold = 0.8
An Example of Range Query Processing

Query Time Series:

Minimal Correlation Threshold = 0.8
An Example of Range Query Processing

Query Time Series:

Minimal Correlation Threshold = 0.8
Hints on All-Pair Queries: Cone vs. Cone

Upper Bound < 45 degree
All–True

Lower Bound > 45 degree
All–False

Lower Bound < 45 degree
Upper Bound > 45 degree
Some–True
Overview

✓ Motivation and Problem Definition
✓ Related Work and Contributions
✓ Proposed Approach
⇒ Evaluation of Proposed Approach
 * Analytical evaluation with cost models
 * Experimental evaluations using real Earth science data
★ Conclusions & Future Work
Experimental Design: Hypothesis

* Efficiency:
 * Spatial Cone Tree vs. Linear Scan vs. F-Index

* Query Processing
 * Range Query
 – Eg: Finding region where its SST is highly correlated with NPP at Minneapolis
 – Vary different minimum correlation threshold
 * All-Pair Query
 – Eg: Finding all highly correlated pairs between SST and NPP
Experimental Evaluation: Data

* Workload

* SST: Monthly Sea Surface Temperature of Pacific
* NPP: Monthly Net Primary Production of USA
* Temporal Span: 1982-1993 (12 × 12 = 144)
* Spatial Resolution: 0.5° × 0.5°, | SST | = 11556, | NPP | = 2901

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Latitude</th>
<th>SST (82-93)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120.5W</td>
<td>5.0N</td>
<td>2560,2567, ..., 2787</td>
</tr>
<tr>
<td>121.0W</td>
<td>5.0N</td>
<td>2567,2456, ..., 2789</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179.5W</td>
<td>5.0S</td>
<td>2034,2175, ..., 2445</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Latitude</th>
<th>NPP (82-93)</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.0W</td>
<td>33.5N</td>
<td>4.56,5.67, ..., 6.90</td>
</tr>
<tr>
<td>97.0W</td>
<td>34.0N</td>
<td>4.34,6.29, ..., 7.56</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.0W</td>
<td>38.0N</td>
<td>2.34,3.23, ..., 4.34</td>
</tr>
</tbody>
</table>
Results of Range Query Processing vs. Linear Scan

* Variable Parameters
 * Minimal correlation threshold θ: 0.3-0.9

![Graph showing correlation cost vs. minimum correlation threshold]

- Computational cost is reduced to 55% – 11%
- Speedup of factor 2 – 10
- Increase minimum correlation threshold \Rightarrow computational savings \uparrow
Results of All-Pair Queries vs. Linear Scan

★ Variable Parameters

★ Minimal correlation threshold θ: 0.3, 0.5, 0.7, 0.9

★ Computational cost is reduced to 63% – 2 %

★ speedup of factor 1.6 – 50

★ Increase minimum correlation threshold ⇒ computational savings ↑
Comparison with F-Index

* F-Index Revisited
 * DFT: time domain \(\Rightarrow\) frequency domain
 * Obtain the coefficients of discrete Fourier transforms of every time series
 * Build a \(2d\) R*-tree index using the first \(d\) coefficients (1-3)
 * Query processing strategy using R*-tree: minimum bounding boxes (MBRs)

* Filter-and-Refine Query Processing
 * Filter out false candidates based on intersections of MBRs
 * Approximation search: superset of the answers
 * Refinement: manual checking of superset
Analytical Cost Models – Notations

* Notations
 * n: number of time series
 * m: length of time series
 * L: number of nodes in the tree (typically $L \ll n$)
 * ϵ: corresponding normalized Euclidean distance for a given θ
 * f_c: number of DFT coefficients used in F-Index
 * c: average number of entries per node
 * a_i: average side size for node i
 * S_{findex}: percentage of time series in refinement for F-index
 * S_{sct}: percentage of time series in refinement for Spatial Cone Tree
 * t_{mbr}: average cost of MBR intersection test
 * t_{corr}: cost of a correlation between two time series
Cost Models for F-Index and Spatial Cone Trees

* Both Use Filter-and-Refine Strategy
 * F-Index uses R-tree intersection with query time series
 * Spatial cone tree uses All-True and All-False filtering

* F-Index:
 * Filtering: \(\sum_{i=1}^{L_{findex}} (a_i + \epsilon)^2 f_c = L_{findex} \times S_{findex} \times t_{mbr} \)
 * Refinement: \(n \times S_{findex} \times t_{corr} \)
 * selectivity \(S_{findex} \): related to query, R*-tree, and \(f_c \)

* Spatial Cone Tree
 * Filtering: \(L_{sct} \times S_{sct} \times t_{corr} \)
 * Refinement: \(n \times S_{sct} \times t_{corr} \)
 * selectivity \(S_{sct} \): related to query and Spatial Cone Tree
Spatial Cone Tree vs. F-Index

* Dominant Zone for Computation
 * Refinement step is often more expensive than Filtering Step
 * Selectivity (S_{findex} or S_{sct}) is an important factor
 - data with skewed power spectrum or $f_c \uparrow$: $S_{findex} < S_{sct}$ (F-Index wins)
 - spatial data with non-skewed power spectrum: $S_{findex} > S_{sct}$ (SCT wins)

* Evaluation
 * Check the refinement cost for both methods using selectivity
 - Check the percentage of time series in the refinement step
Comparison with F-Index with Range Query

- F-Index: Select 2, 6, 8, 10 coefficients for R*-Tree respectively

- Spatial Cone Tree outperforms the F-Index for the spatial time series data with non-skewed power spectrum.
Recap of Evaluation

* Analytical Analysis using Cost Models

* Experimental Evaluation

 * Hypothesis: efficiency (Spatial Cone Tree vs. Linear Scan vs. F-Index)
 * Workload: NASA Earth science data
 * Comparison with Linear Scan
 - Speedup of factor of 2–10 for range queries
 - Speedup of factor of 1.6–50 for all-pair queries
 * Comparison with the F-Index
 * Outperforming F-Index for spatial time series data with non-skewed power spectrum
 * F-Index might be better for data with skewed power spectrum
 * Increase minimum correlation threshold $\theta \Rightarrow \text{speedup} \uparrow$
Conclusions

* Spatial time series data and correlation-based queries are abundant in many applications
 * e.g., NASA Earth science data, epidemiology, climatology

* Spatial Cone Tree
 * An indexing structure on spatial time series data
 * Support spatial time series data type and operations
 * Spatial autocorrelation facilitated query processing
 * Analytical evaluation and experimental evaluation
Other Contributions

* Spatial Data Mining: Spatial Outlier Detection
 * Outlier detection: e.g., credit card fraud detection
 * Spatial outliers: neighbor-based outlier detection in topological data
 * “A Unified Approach to Detecting Spatial Outliers”, GeoInformatica, 7(2), 2003

* Visualization of Spatio-Temporal Data
 * “Data Mining for Selective Visualization of Large Spatial Datasets”, IC-TAI 2002

* Data Mining with the Application of Intrusion Detection
 * Summer Research Intern at the United Technologies Research Center, 2004
Future Work: Short Term

Data Mining Tasks:
Classification Relationship Mining
Clustering Outlier Detection

DBMS
Query Language
Query Processing
Storage and Indexing

Spatial
Time Series
Data

Correlation Queries

Accomplished
Future Work (Short Term)
Long Term Agenda: Spatio-Temporal Databases and Data Mining

* Spatio-Temporal Database and Data Mining Design
 * Many applications, such as GIS, epidemiology, climatology, etc

* Challenges:
 * Spatial feature selections
 * Indoor space modeling
 * Navigation routing
 * Continuous query processing and optimization
 * Mining frequent common preferences
Acknowledgements

★ Advisers: Prof. Shashi Shekhar and Prof. Vipin Kumar
★ Committee: Prof. Jaideep Srivastava and Prof. Sudipto Banerjee
★ Spatial Databases and Data Mining Group Members
★ NASA Collaborators: Chris Potter and Steve Klooster
★ Dept. of Comp. Sci. & Eng. and AHPCRC at U. of M.
★ Doctoral Dissertation Fellowship by the Graduate School
Thank You! and Questions

URL: http://www.cs.umn.edu/~pusheng
Email: pusheng@cs.umn.edu
Correlation: Review

* Definition

\[\rho = \frac{\sigma_{f,g}}{\sigma_f \sigma_g} = \frac{1}{m} \sum_{t=1}^{m} \left(\frac{(f_t - \bar{f})(g_t - \bar{g})}{\sigma_f \sigma_g} \right) \]

* Statistical Significance of Correlation

 * How large is significant for correlation?

 * Significance Test

 - Fisher’s Z test: \(Z = \frac{1}{2} \log \frac{1+\rho}{1-\rho} \)

 - confidence level \(\Rightarrow \rho_{\text{min}} \)

 - E.g.: confidence level 95% \(\Rightarrow \rho_{\text{min}} = 0.46 \)

 - Student-t test for short time series
Cost Model (backup)

* L: Number of nodes for R*-tree

\[L = \frac{n}{c_{rtree}} + \frac{n}{c_{rtree}^2} + \ldots + \frac{n}{c_{rtree}^{h-1}} + 1 = \frac{n}{c_{rtree}^{h-1}} \times (1 - \frac{1}{c^{h-1}}) \]

* height of the R*-tree: \(h = 1 + \left\lceil \frac{N}{c_{rtree}} \right\rceil \)
Problem Definition

* Given:
 * Large spatial time series datasets
 * A set of operations
 – Correlation-based Queries:
 – Range query, all-pair queries, and nearest-neighbor query
 – Maintenance Operations: insertion, deletion, bulk-loading

* Find: A disk-based data structure

* Objectives: computational efficiency

* Constrains:
 * Correctness and Completeness
 – No false admissions
 – No false drops
Discussion on Cone Span

- Given minimum correlation threshold θ: $(\theta, 1]$
 - Corresponding angle range is $[0 \arccos \theta)$

- The cone span should be less than $\frac{\arccos \theta}{2}$

- Empirical Estimation: Correlogram
Parameter Selection

* Correlogram
 * Distance vs. Correlation
 * Parameter Selection for Bulk Loading: Initial Cone Size

![Graph showing distance vs. correlation for parameter selection](image-url)
Design Issues

* Blocking Factor
 * the number of index records per disk page
 * Depend on length of time series (cone axis)
 – index record includes cone span, cone axis, and pointer
* Node Compression
 – Dimensionality reduction: reduce length of time series
 – Divide long time series into fixed-length smaller chunks

* Balancing Issue
 * Balanced tree: all leaf nodes are on the same level
 * Balancing is desirable
 * Overheads of keeping balancing are extensive
 * Explore balancing property
Completeness and Correctness

* Correctness

 * Lemma: Range query processing strategy is correct
 – Proof Sketch:
 – results are from all-true or refinement
 – all-true Lemma guarantees no false admission
 – refinement guarantees no false admission

* Completeness

 * Lemma: Range query processing strategy is complete
 – Proof Sketch:
 – dismissals happen in all-false or refinement
 – all-false lemma guarantees no false dismissals
 – refinement guarantees no false dismissals